lunes, 29 de septiembre de 2008
domingo, 28 de septiembre de 2008
TEORIA DE CONJUNTOS
TEORIA DE CONJUNTOS
es una división de las matematicas que estudia los conjuntos. El primer estudio formal sobre el tema fue realizado por el matemático alemán Georg Cantor en el Siglo XIX y más tarde reformulada por Zermelo.
El concepto de conjunto es intuitivo y se podría definir como una "colección de objetos"; así, se puede hablar de un conjunto de personas, ciudades, lapiceros o del conjunto de objetos que hay en un momento dado encima de una mesa. Un conjunto está bien definido si se sabe si un determinado elemento pertenece o no al conjunto. El conjunto de los bolígrafos azules está bien definido, porque a la vista de un bolígrafo se puede saber si es azul o no. El conjunto de las personas altas no está bien definido, porque a la vista de una persona, no siempre se podrá decir si es alta o no, o puede haber distintas personas, que opinen si esa persona es alta o no lo es. En el siglo XIX, según Frege, los elementos
de un conjunto se definían sólo por tal o cual propiedad. Actualmente la teoría de conjuntos está bien definida por el sistema.
EJEMPLO DE UN CONJUNTO
TENDENCIA ESTOCASTICA
Es aquella cuyo valor solo puede saberse con exactitud una vez que este se haya observado.
Sirve para analizar las propiedades de los metodos de predicciones bajo dos esquemas distintos, artificialmente su relevancia depende del realismo de los datos artificiales.
viernes, 26 de septiembre de 2008
PERMUTACION Y COMBINACION
Combinacion
lunes, 22 de septiembre de 2008
CONJUNTO VACIÓ O NULO: Es aquel que no tiene elementos y se simboliza por o { }.
A = {x2 + 1 = 0 x R}
El conjunto A, es un conjunto vacío por que no hay ningún número real que satisfaga a x2+1 = 0
CONJUNTO UNIVERSAL: Es el conjunto de todos los elementos considerados en una población o universo, en un problema en especial. No es único, depende de la situación, denotado por U o .
RELACIONES ENTRE CONJUNTOS
IGUALDAD DE CONJUNTOS
Considerando el conjunto A y el conjunto B, si ambos tienen los mismos elementos, es decir, si
cada elemento que pertenece a A también pertenece a B y si cada elemento que pertenece a B
pertenece también a A. A = B
SUBCONJUNTO
Si todo elemento de un conjunto A es también elemento de un conjunto B, entonces se dice que A es un subconjunto de B. Representado por el símbolo . A B o B A
SUBCONJUNTOS PROPIOS
Se dice que es un subconjunto propio de A sí todos los elementos de un conjunto B se encuentran
incluidos en él A, denotado por .
A B o B A
lunes, 15 de septiembre de 2008
TEORIA DE LA PROBABILIDAD
Los procesos reales que se modelizan como procesos aleatorios pueden no serlo realmente; cómo tirar una moneda o un dado no son procesos aleatorios en sentido estricto, ya que no se reproducen exactamente las mismas condiciones iniciales que lo determinan, sino sólo unas pocas. En los procesos reales que se modelizan mediante distribuciones de probabilidad corresponden a modelos complejos donde no se conocen a priori todos los parámetros que intervienen; ésta es una de las razones por las cuales la estadística, que busca determinar estos parámetros, no se reduce inmediatamente a la teoría de la probabilidad en sí.
En 1933, el matemático soviético Andréi Kolmogórov propuso un sistema de axiomas para la teoría de la probabilidad, basado en la teoría de conjuntos y en la teoría de la medida, desarrollada pocos años antes por Lebesgue, Borel y Frechet entre otros.
Esta aproximación axiomática que generaliza el marco clásico de la probabilidad, la cual obedece a la regla de cálculo de casos favorables sobre casos posibles, permitió la rigorización de muchos argumentos ya utilizados, así como el estudio de problemas fuera de los marcos clásicos. Actualmente, la teoría de la probabilidad encuentra aplicación en las más variadas ramas del conocimiento, como puede ser la física (donde corresponde mencionar el desarrollo de las difusiones y el movimiento Browniano), o las finanzas (donde destaca el modelo de Black y Scholes para la valuación de acciones).
El concepto de probabilidad nace con el deseo del hombre de conocer con certeza los eventos futuros. Es por ello que el estudio de probabilidades surge como una herramienta utilizada por los nobles para ganar en los juegos y pasatiempos de la época. El desarrollo de estas herramientas fue asignado a los matemáticos de la corte.
Con el tiempo estas técnicas matemáticas se perfeccionaron y encontraron otros usos muy diferentes para la que fueron creadas. Actualmente se continúo con el estudio de nuevas metodologías que permitan maximizar el uso de la computación en el estudio de las probabilidades disminuyendo, de este modo, los márgenes de error en los cálculos.
A través de la historia se han desarrollado tres enfoques conceptuales diferentes para definir la probabilidad y determinar los valores de probabilidad:
Concepto de Probabilidad
Se define como cálculo de probabilidad al conjunto de reglas que permiten determinar si un fenómeno ha de producirse, fundando la suposición en el cálculo, las estadísticas o la teoría.
El objetivo de esta práctica es realizar varios experimentos de probabilidad, anotar los resultados y posteriormente compararlos con los resultados teóricos.
Objetivos de las Probabilidades
El objetivo fundamental de la probabilidad, es la de mostrar al alumno la importancia y utilidad del Método Estadístico en el ámbito económico-empresarial. Con tal fin, el alumno deberá aprender a manejar los métodos y técnicas más adecuadas para el correcto tratamiento y análisis de la información proporcionada por los datos que genera la actividad económica.
Para ello se comienza afianzando los conocimientos que el alumno ya posee de Estadística Descriptiva, además de algunos conceptos nuevos relacionados con este tema.
El valor más pequeño que puede tener la probabilidad de ocurrencia de un evento es igual a 0, el cual indica que el evento es imposible, y el valor mayor es 1, que indica que el evento ciertamente ocurrirá. Entonces si decimos que P(A) es la probabilidad de ocurrencia de un evento A y P(A´ ) la probabilidad de no-ocurrencia de A, tenemos que: