Para entender lo que son las permutaciones es necesario definir lo que es una combinación y lo que es una permutación para establecer su diferencia y de esta manera entender claramente cuando es posible utilizar una combinación y cuando utilizar una permutación al momento de querer cuantificar los elementos de algún evento.
Es todo arreglo de elementos en donde nos interesa el lugar o posición que ocupa cada uno de los elementos que constituyen dicho arreglo.
Para ver de una manera objetiva la diferencia entre una combinación y una permutación, plantearemos cierta situación.
Por tanto, la fórmula de permutaciones de r objetos tomados de entre n objetos es:
Permutaciones SIN repetición:
Las permutaciones sin repetición de n elementos se definen como las distintas formas de ordenar todos esos elementos distintos, por lo que la única diferencia entre ellas es el orden de colocación de sus elementos.El número de estas permutaciones será: Permutaciones CON repetición:
veces, etc) verificándose que Llamamos a las permutaciones con repetición de n elementos tomados de a en a, de b en b, de c en c, etc, cuando en los n elementos existen elementos repetidos (un elemento aparece a veces, otro b veces, otro ca+b+c+...=n.El número de estas permutaciones será:
COMENTARIO:
Una permutación es una combinación en donde el orden es importante. La notación para permutaciones es P(n,r) que es la cantidad de permutaciones de “n” elementos si solamente se seleccionan “r”.
Ejemplo: Si nueve estudiantes toman un examen y todos obtienen diferente calificación, cualquier alumno podría alcanzar la calificación más alta. La segunda calificación más alta podría ser obtenida por uno de los 8 restantes. La tercera calificación podría ser obtenida por uno de los 7 restantes.
La cantidad de permutaciones posibles sería: P(9,3) = 9*8*7 = 504 combinaciones posibles de las tres calificaciones más altas.
Permutaciones SIN repetición:
Las permutaciones sin repetición de n elementos se definen como las distintas formas de ordenar todos esos elementos distintos, por lo que la única diferencia entre ellas es el orden de colocación de sus elementos.
veces, etc) verificándose que Llamamos a las permutaciones con repetición de n elementos tomados de a en a, de b en b, de c en c, etc, cuando en los n elementos existen elementos repetidos (un elemento aparece a veces, otro b veces, otro ca+b+c+...=n.
COMENTARIO:
Permutacion es muy distinto o todo lo contrario que combinacio por que sin en combinacion no interesa el orden y lugar en permutacio si interesa el orden y lugar como por ejemplo si AyB no es igual a ByA.
No hay comentarios:
Publicar un comentario